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Callipeltoside A () is a recently isolated cytotoxic agent from 3 3&2825
a marine lithistida spong&€gllipelta sp) with excellent prospects MeO . Ru Alder Ene Coupling
for the study and treatment of canédt.was found to inhibit in _ Meo 8
vitro proliferation of NSCLC-N6 human bronchopulmonary callipeltoside A (1): R=Cl | > = me0 =
nonsmall-cell-lung carcinoma (11.2@/mL) and P388 (15.26g/ Sl loside A (2): R = H R 4 N
mL) cells. To study this fascinating molecule and its biological o P
activity, an efficient synthesis is requirééurthermore, there are Meoﬁ"e 7 _NTBDMS
several unresolved stereochemical issues: (1) the relative con- NH TSy
figuration of C-21 with respect to the macrolide and (2) the Cl,¢” 07 07 "Me

absolute configuration of the natural product. Furthermore, the
relative configuration of the sugar with respect to the macrolide
rests only on two nOe'8 In this communication, we disclose a

5
Figure 1. Structure of callipeltoside A and2.

) ; : X - Scheme 1
facile synthesis of deschlorocallipeltosid®) (allowing for a
general entry to this structural type. L\ i j’\/\ iv. OR
Figure 1 illustrates a simplification of the synthetic target to MeO™ ™" "OR R™ 7" "OTBDMS /kA OTBDMS
Me = Me

three building blocks: the cor® the side chaid, and the sugar

5. The three bond disconnections depicted facilitate the synthesis

of the core3. The stereocenter at C-13 is envisioned to derive
from a palladium-catalyzed allylic alkylation and that at C-9 by

6:R=H 8: R = N(Me)OMe

. 10: R=H ——
7:R=TBOMS~J " R~ i—= e 1R =Me~—1"
a2 Reagents and conditions: i.) TBDMSCI, imidazole, £}, rt, 2h,

T

a diastereoselective reduction. The stereocenters at C-5, C-6, an®9%,; ii.) MeNHOMeHCI, i-PrMgCl, THF, —20 °C, 1 h, 98%; iii.)
C-7 were conceived to derive from diastereoselective aldol-type 1-propynylmagnesium bromide, THF?G, 89%; iv.) 2-methyl §-CBS-
processes. The remaining stereocenter at C-8 came from the chirapxazaborolidine, BstSMe;, THF, =30 °C, 1 h, 10:1 dr, 99%; v.) Mel,

pool and thus was purchased.

Ag; O, EO, rt, 4 h, 92%.

Scheme 1 begins the journey with the synthesis of the C-7 to gcheme 2

C-11 fragment starting with the commerically available methyl
S-3-hydroxy-2-methylpropionate. The Weinreb am&leas made
by the Merck methotlusing a magnesium reagent (98%) rather
than the more common aluminum reagents (best yield 65%).
Diastereoselective reduction of ketoBewith achiral reducing
agents proved disappointing with threo:erythro ratios ranging from
0.5:1.0 to 1.8:1.0. Using 2-methylSCBS-oxazaborolidine,
borane reduction gave an excellent redult.

The extension of the C-7 to C-11 fragment to C-14 is outlined
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in Scheme 2. The formation of the trisubstituted alkene requires a Reagents and conditions: i.) CpRU(§3N)sPFs (5 mol %), acetone,

a regioselective Alder ene-type reaction. In the ideal situation, rt, 20 min, 85%; ii.)p-methoxyphenol13 (7.5 mol %), Pedba:CHCl;

the alcohol would already be activated for the subsequent allylic (2.5 mol %), tetrabutylammonium chloride, @&y 20:1 dr, 2:1

alkylation. Neither of these two aspects had previously been regioselectivity (2:1°), 79%.

explored. Gratifyingly, this chain extension to fo proceeded  could subsequently be inverted by a Mitsunobu protocol, the

without any complications under our standard conditions for the additional steps made that sequence unattractive SBiksgand

ruthenium-catalyzed alker@lkyne couplingin 85% yield. The 13provides a 20:1 dr and a somewhat reduced branched-to-linear

use of chiral ligands was anticipated to control the regio- and 2:1 regioselectivity favoring the correct diastereomer which

diastereoselectivity to set the C-13 stereocehtésing theR,R- allowed it to be isolated pure in 51% yield.

ligand, ent13, gave a matched pair to produce a 19:1 dr and a  The completion of the synthesis of the co8)(of callipel-

3.0:1 branched-to-linear regioselectivity but with the configuration toside A is displayed in Scheme 3. The kinetically forned

opposite that of the natural product. Although this stereocenter |ithium enolate oftert-butyl thiopropionate adds to aldehydé
AL Yy ; - ; ' to provide the Cram-type addition produtf with 5:1 diaste-

C SR o Soa59n 118 11085 11088, (b) Zampeia. A Daura  reoselectivity’. Fellin—Ahn type addition to aldehydes of the
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dienyl silyl ether1® produced a single diastereon whose
silyl ether21 was subjected to CAN to liberate the C-13 hydroxyl
group @2) for macrocyclization. The Boeckman thermal protocol
proceeded smoothly (82% yield) at high dilution to form the 14-
membered macrolid23.° The synthesis of the macrolide required
16 steps from commercially availabeand proceeded in 11%
overall yield.
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aReagents and conditions: i.) TBAF, THF, rt, 12 h, 96%,; ii.) Dess
Martin periodinane, NaHC§) CH,Cl,, 0 °C, 84%; iii.) tert-butylthiopro-
pionate, LDA, THF,—108°C, 3 h, 5:1 dr, 82%; iv.) TBDMSOT, 2,6-
lutidine, CHCl,, 0°C, 2 h, 86%; v.) DIBAL, toluene-78°C, 3 h, 79%;
vi.) BF3-:OEty CH.Cly —78 °C, 45 min, 94%; vii.) TBDMSOTf, 2,6-
di-tert-butylpyridine, CHCI,, 0 °C, 1 h, 95%; viii.) CAN, acetone:#D
(4:1), 0°C, 5 min, 82%; ix.) 0.5 mM in toluene, 11TC, 1 h, 82%.
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aReagents and conditions: i.) ref 2f; ii.) TBDMSOTf, 2,6-lutidine,
CHCly, rt, 2 h, 55%; iii.) Mel, AgO, DMF, rt, 12 h, 69%, iv.) HSQy,
PPTS, acetic anhydride, rt, 2 h, 81%; v)G0O;, MeOH, rt, 5 min, 89%;
vi.) CIsCCN, NaH, CHCIy, rt, 10 min, 86%.

Communications to the Editor

X=OH
4: X=P(O)(OMe), i
a2 Reagents and conditions: i.) Cul, pyrrolidine, THF,@to rt, 2 h,
38%; ii.) Red Al, THF, 0°C, 1 h, 96%; iii: PPl CBry, CHCl,, —40
°C, 1 h, 95%; iv.) P(OMe) 100°C, 6 h, 97%.
Scheme 6
OTBDMS

OTBDMS

a2 Reagents and conditions i.) Os®IMO, THF:H,O (4:1), 0°C, 4 h;
NalOy, THF:HO, rt, 3 h, 80%; ii.)4, LIHMDS, THF, —78°C, 3 h, 4:1
(E:2), 40%,; iii.) HF-pyr, MeOH, rt, 3 h; ppts, ED, MeCN, rt, 1 h, 60%;

iv.) 5, TMSOTH, dichloroethane4 A MS, dichloroethane, rt, 30 min,
80%; v.) TBAF, acetic acid, THF, rt, 5 min, 95%.

zation to form the aglycon27. Comparison of théH and3C
NMR spectra of27 to those reported by Paterson for the chloro
analogue® showed a great likeness except for those regions
associated with the chloro side chain. The glycosylation proceeded
excellently to give a single diastereoniarAgain, comparison

of the spectral data foR was virtually identical to that for
callipeltoside A () except in those regions associated with the
different side chains. The issue of the absolute configuration of
the natural product is unresolved. Unfortunately, Paterson’s data
indicates the chloro substituent can have an immense impact on
the sign of the rotation. Thus, although the sign of our rotation,
[a]p = +45.0, is opposite that of the natural prodticke]p =
—17.6, it is still not possible to assign the absolute stereochem-
istry. The excellent agreement of our NMR spectra to that of the
natural product reinforces the correctness of the relative config-
uration of the sugar with respect to the macrolide.

This concise synthesis of deschloro callipeltoside is comprised

The timing for installation of the side chain was dictated by of 22 steps for the longest linear sequence with an additional five
the nature of the two-step oxidative cleavage of the alkene andsteps for the enyne and 14 steps for the sugar, all starting with

the Emmons-Wadsworth-Horner reaction. Best yields were

commercially available materials. Either enantiomer of the core

obtained by performing these transformations at the stage of themacrolide can be readily accessed since it emanates from two
macrolide23. Scheme 4 outlines the synthesis of the trichloro- events: (1) the stereochemistry of methyl 3-hydroxy-2-methyl-

acetimidate of thé\-silyl derivative of callipeltosel5). Methyl

propionate (both enantiomers are commercially available) and (2)

callipeltose 24) was synthesized starting from rhamnose as the Pd AAA which can provide either epimer simply by choice

previously reported’ In our hands, thé-methylation was best

of ligand. Variation of the side chain including the naturally

accomplished on the silylated oxazolidin-2-one. Scheme 5 occurring chloro analogues may also be accessed. Our route
provides a straightforward four-step approach to the deschloro highlights a new synthesis of geometrically defined trisubstituted

side chain.

alkenes using Ru catalysis and regio- as well as diastereoselective

Scheme 6 depicts the completion of the synthesis. Chemose-synthesis of an allyl ether via Pd AAA reactions that could not
lective cleavage was best accomplished by sequential dihydroxy-be easily accomplished otherwise.

lation followed by periodate cleavage. Emmong/adsworth-
Horner olefination produces a 4B:Z mixture with the lithium

salt at —78 °C.1° Changing metal counterions to sodium or
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